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A solar energy desalination analysis 
tool, sedat, with data and models 
for selecting technologies and 
regions
Vasilis Fthenakis1 ✉, Gregory Yetman2, Zhuoran Zhang1, John Squires2, Adam A. Atia   1, 
Diego-César Alarcón-Padilla3, Patricia Palenzuela3, Vikas Vicraman1 & Guillermo Zaragoza3

There is interest for desalination technologies powered by solar energy as arid areas are typically 
bestowed with good solar potential. In response to a US DOE call for solar desalination analysis tools, 
we developed an open-source solar energy desalination analysis tool, sedat, for techno-economical 
evaluation of desalination technologies and selection of regions with the highest potential for using 
solar energy to power desalination plants. It is expected that this software will simplify the planning, 
design, and valuation of solar desalination systems in the U.S. and worldwide. Sedat uses Dash for 
integrating various layers of large volumes of GIS data with Python-based models of solar energy 
generation and desalination technologies. It derives time-series of energy generation and water 
production, with details of plant performance and suggestions for improving the solar-desalination 
coupling. This paper summarizes the various phases of the tool’s development, presents example 
results showing the potential, under multiple objectives, of solar desalination in parts of the U.S. 
southwest, and discusses method details that would be useful for future model development.

Introduction
Producing fresh water via desalination is essential for arid, water-scarce regions, but it is expensive and 
energy-intensive. The cost of energy is a significant contributor to this high cost, and the use of fossil fuels 
that currently power desalination plants causes emissions of greenhouse gases and other hazardous pollutants. 
However, the recent cost reductions and technological advances of solar energy systems create opportunities for 
implementing low-cost and emission-free desalination technologies.

This paper discusses the development of sedat, a user-friendly software for enabling a comparative evaluation 
of solar desalination technology options and using geospatial data layers to identify regions of high-potential for 
solar thermal desalination. Sedat uses geospatial analysis in combination with an energy and desalination tech-
nology modeling framework that describes current and emerging desalination processes on industrial scales. 
Its use enables: (i) streamlined identification of locations where solar thermal desalination can be most compet-
itive and (ii) system-level simulation & optimization of solar energy and desalination system integration. It is 
expected that this software will simplify the planning, design, and valuation of solar desalination systems in the 
U.S. and worldwide.

Sedat is an open-source, Python-based tool, that integrates various layers of data describing solar and saline 
water resources, water and energy infrastructure, applicable regulations, costs and competitive prices. Most of 
these data, except for the solar irradiation and United States Geological Survey (USGS) water resources, were 
not available in a single database. Thus, we integrated a suite of geospatial data sources and techno-economic 
input parameters, shown in Table 1, for simulating integrated solar energy technology systems and desalination 
technologies in one graphical user interface (GUI) that can be used and efficiently processed in desktop and 
laptop computers.
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Siting a solar desalination facility requires information on a variety of inputs related to resources (solar 
inputs, water sources), markets (energy and water prices), and legal frameworks (e.g., permitting requirements 
and land use restrictions). Selecting and appropriating solar desalination technology requires models based on 
both location-specific characteristics and non-spatial input values. We have assembled a collection of integrated 
spatial data inputs and implemented a map-based data exploration interface with the ability to choose a location, 
solar technology model, and cost model to produce a report and charts of system inputs and outputs to evaluate 
and compare different options for technology and site selection.

For example, for solar desalination of inland brackish water, the USGS data are used to seed the database 
with known brackish water resources, and existing water infrastructure (e.g., national level water networks like 
National Hydrography Dataset (NHD)1, as well as state level networks such as California Central Valley Project 
(CVP) and State Water Project (SWP), represented by aqueducts). The choice of technology can be identified 
based on the quality and quantity of water, the brine management requirements, the solar resource and the elec-
tricity & fuel prices in the region.

The software also allows the user to enter data and parametric inputs on geospatial, economic, and technical 
variables. For example, a user may provide an alternative source (perhaps from more detailed, proprietary, or 
up-to-date data) in place of one or more of the input data that are available within the software. Such an approach 
contributes to product flexibility and to the potential of creating a data hub for future use. Alternative data sources 
can be provided through the GUI manually or by updating the data files available within the application.

A web interface was developed for quick visualization of geospatial data and performing simple 
techno-economic calculations without requiring software installation, while an integrated GIS and Python 
application was developed for more detailed geospatial and techno-economic analyses. The desktop appli-
cation includes comprehensive techno-economic models of desalination technologies developed during 
this project that facilitate the most effective use of solar thermal energy. This model development leverages 
existing tools, like the concentrated solar power (CSP) models in National Renewable Energy Laboratory’s 
(NREL) SAM open-source2, and solar thermal energy and desalination models available from researchers at 
CIEMAT-Plataforma de Almeria (PSA)3. Figure 1 shows a high-level framework of the tool.

The software uses a modular architecture in its design making it flexible for expansion. The techno-economic 
modules deliver an analytical workflow for planning and designing solar thermal desalination systems in opti-
mal locations via a user-friendly GUI. This interface provides default value inputs for technical design as well as 
capital and operating cost parameters to allow for comparative analyses between different solar thermal desal-
ination technologies as well as other competing desalination technologies. The software quantifies the perfor-
mance of user-selected desalination systems based on regional specifications and cost parameters, while listing 
the underlying assumptions. The user can change the assumptions and select another system of interest for 
evaluation. The technology suggestions are based mainly on the saline water total dissolvable solid (TDS) con-
centration, levelized cost of product water (LCOW), product purity, and target brine concentration.

The desalination techno-economic models include: Low-temperature multi-effect distillation (LT-MED), 
multi-effect distillation with thermal vapor compression (MED-TVC), multi-effect distillation with absorption 
heat pumps (MED-ABS); vacuum air gap membrane distillation (VAGMD) in continuous and batch opera-
tion modes, reverse osmosis (RO) with multiple passes, osmotically assisted reverse osmosis (OARO), forward 
osmosis (FO), and RO-VAGMD, and RO-FO hybridizations.

The user interface goes over the subsequent steps of selecting a site of interest, selecting the technical and 
financial technology models, running desalination plant design and performance simulation, and showing 

Parameters Data layers Sources

Water Demand

Population density & projections Hauer19,28

Canals and aqueducts USGS19

Roads as water network proxy U.S. Census Bureau20

Alternative Water Sources

Brackish water sources: depths, total dissolvable 
solids (TDS) USGS32

Oil & Gas Produce water TDS USGS National Produced Waters Data15

Desalination plants in the U.S. Global Water Intelligence (GWI)17, Texas Water 
Development Board33

Solar Resources Solar Irradiance: GHI, DNI NSRDB10, PVGIS11

Heat Sources
Power plant EIA34

Water temperature USGS (brackish)32

Land Use

Topography MapBox35

Restricted and sensitive areas USGS36

Agricultural saline water drainage regions CA-Dept. Water Resources37

Cost Data

Municipality water prices IBNET23

Cost data for desalination systems Multiple literature sources38–42

Utility electricity rate structures OpenEI43

Average fuel prices U.S. Energy Information Administration API44

Planning, Regulatory Desalination & water treatment regulatory and 
permitting requirements State Water Resource Control Boards22–27

Table 1.  Primary data layers integrated into sedat.
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results in terms of plant specifications and performance time-series. Figure 2 gives an overview of this architec-
ture. The left columns list the inputs and the right one lists the outputs.

Software modules based on open geographic software libraries from OSGeo4 and other sources assemble, 
extract, transform and pass the geospatial data to techno-economic solar generation and desalination compo-
nents. A logic was implemented to dynamically collect model input parameters from locations in the GUI. Once 
a user selects a location, the associated values for the variables needed in the solar and the desalination models 
are displayed to the user and stored in JavaScript Object Notation (JSON) file for using as model inputs after the 
model selection. This process can be repeated iteratively using different locations; once a user is satisfied with 
a location selection, they can select models of solar generation, desalination and financials. Variables that were 
derived from the geographic maps and used as input into the models are displayed together with the model 
results in a summary report and results map.

Results
The open-source software libraries used in the application support the GUI and analysis functions. Both 
Dash-Plotly with Dash-Leaflet are used for visualization (i.e., maps, table display) and user input data. Using 
only the Dash-Plotly map application required that all data be stored in computer memory. This degraded per-
formance at load time when starting the map application and when different map themes (e.g., legal restric-
tions, waste heat) were chosen by the end user. Also, the selection of a new site by the user required a reload, 
making this process slow. To solve this issue, a new map framework was implemented for Dash, based on a 
web map framework known as Leaflet (https://pypi.org/project/dash-leaflet/) This allows layers to be retrieved 
from Mapbox and loaded locally. The new framework enables dramatic improvements in load time and greatly 
improves performance when a user selects a site, with near-instantaneous response from the application when 
panning and zooming.

Using this framework, we implemented a prototype that enabled the following: Splitting data for faster que-
rying, ability to display and allow users to edit input values, ability to call external Python modules from the 
framework, simplifying the interactions with technologies and protocols, and displaying an interactive map. 
The framework allows adding new solar and desalination models, serving the objective of building a modular, 
expandable tool for solar desalination analyses.

Site selection.  An example of a site selection result is shown in Fig. 3. The theme dropdown in the left of the 
figure can be used to view various geographic data sets, such us solar resources, water prices, and brackish water 
resources. Spatial objects are also added to the map where appropriate; for instance, while looking at existing 
power plants, a line between the selected site and the closest power plant and the closest desalination plant is 
shown. In different themes, a different line may be shown, such as a line to link the selected site to the closest water 
transportation infrastructure in sedat’s GIS database.

If a user has already selected a point, the location chosen is preserved with the change of theme. In any of 
the implemented themes, the user can choose a new location and proceed to model selection. By zooming on 
a location the user can see all the terrain infrastructure details available from satellite and topographical maps.

Solar generation model development.  CSP and PV models associated with corresponding financial 
models were integrated from SAM so that the user has full access to all the inputs and outputs in SAM -a widely 
used solar simulation software. Static collector models developed by PSA were translated into Python and were 
normalized to share the same data as the SAM solar models. The weather information is linked to the user’s loca-
tion selection on the map. Sedat includes major outputs that were not included in the original models, such as 
waste heat generation which is depicted by time-series charts and summary reports, while details can be exported 
through Excel files.

Fig. 1  Basic framework of sedat.
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Desalination model development.  Desalination techno-economic models were unified in terms of code 
structure and data frame. Technologies were described by individual design and simulation models. The former 
provides the physical design (e.g., specific heat exchange area) and the performance of system at the design point 
within a few seconds, and it allows the user to adjust the system parameters accordingly. A simulation model 
reads the hourly generation from the solar model and executes cost simulations to provide a complete analysis of 
the annual performance of the system.

Integration of solar and desalination models.  As shown in Fig. 2, the user can select from nine solar 
energy generation, nine desalination and four cost models. In this section we present just four examples of such 
selection and integration of models in sedat simulations: a) flat-plate solar collectors with membrane distillation 
(MD), b) flat-plate solar collectors with low temperature multi-effect distillation (LT-MED), c) linear Fresnel CSP 
with LT-MED and d) parabolic trough CSP and thermal storage with MED.

Solar flat-plate collectors and MD.  Among current MD designs, vacuum-enhanced air-gap (VAGMD) offers 
the lowest specific thermal energy consumption (STEC) and when operating in batch mode, it also offers high 
recovery rates. Empirical models were developed based on pilot systems designed by Zaragoza and co-workers5 
for both one-pass and batch VAGMD configurations. These were integrated with the flat-plate collector model 
described earlier. A schematic of this system is shown in Fig. 4. Figure 5 shows an example of the associated 
Results Report. Figure 6 shows a parametric analysis on the integration of thermal energy storage (TES) at dif-
ferent sizes, and Fig. 7 shows time-series plots of daily thermal power generation and water production for the 
system.

In the above example, a message warning about high energy curtailment was displayed as such curtailment 
was above a threshold of 20%. In most cases the user can follow the instructions to involve the TES or reduce the 
size of solar field. The message also offers suggestions for resolving the issue; namely either reducing the size of 
the solar system or adding energy storage to it. Subsequently, the parametric analysis option in sedat was used to 
examine various thermal energy storage sizes.

As shown in Fig. 6, parametric analysis of the considered system indicated that 12 hr. of thermal storage is 
the most cost-effective TES option for the considered system and location. At that level the TES uses all thermal 
energy from a 5 MWe solar collector and it produces 140% more water at 15% lower LCOW compared to the 
reference case without a TES. Sedat produces hourly, daily and weekly time-series of the system performance. 
Figure 7 shows the daily energy generation and water production of the CSP + 12 hr TES.

Flat plate collectors and LT-MED.  This model is based on the performance of a solar thermal LT-MED desal-
ination pilot plant operating in Plataforma Solar de Almeria (PSA), Spain6 (Fig. 8). The MED system is com-
prised of 14 effects and 13 preheaters using solar energy from AQUASOL-II, a solar field with 60 flat-plate 
collectors. The overall thermal energy demand for the MED system is 190 kW at 70 °C7.

Preliminary simulations of this integrated system showed that the LT-MED model needed to be modified. 
The original model was intended for guiding the design of a test pilot plant, estimating the optimal heat exchange 
area in each effect. The LT-MED model was transformed from a design to a simulation tool, where heat exchange 

Fig. 2  Inputs and outputs of sedat and sequence of generating results for analysis of solar desalination 
technologies in considered regions.
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areas in each effect are constant, and the multiple-effect temperatures were calculated according to the input 
conditions (e.g., steam temperature at the first effect, temperature at the final condenser, and feed water flow).

Linear Fresnel Direct Steam CSP and MED.  Another integration of CSP and thermal desalination includes 
a Linear Fresnel with Direct Steam Generation (LF-DSG) CSP component and the aforementioned LT-MED 
model8 (Fig. 9).

Figure 10a shows the hourly simulation of 2.5 MWe LF-DSJ powering an LT-MED plant (2,000 m3/day) fed 
with 60 g/L saline water. The simulation gave a “High energy curtailment warning” and a smaller solar field (i.e., 
1.8 MWe) is selected to reduce the energy curtailment as instructed in the warning message; the time-series of 
this simulation is shown in Fig. 10b.

Fig. 3  Example Site Selection and associated display information.

Fig. 4  Schematic of flat plate collector and MD system49.
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By reducing the size of the solar field from 2.5 MWe to 1.8 MWe, the thermal energy curtailment drops 
from 31.7% to 12.2%, at the sacrifice of ~5.8% water production through a year. As shown in Fig. 10, the water 
productions are similar in May as there is excess energy generated, and the desalination system operates at full 
capacity during sunny days. In cloudy days when irradiation is insufficient, less waste energy is produced from 
the 1.8 MWe CSP system and correspondingly the water production is less.

Parabolic trough CSP and MED.  A model of an integrated system comprising parabolic trough (PT) CSP and 
an MED pilot plant was developed based on the specifications of PT and MED pilot plants at PSA, Almeria, 

Fig. 5  Example simulation report showing local conditions, desalination and solar field configurations, and 
techno-economic performance of the batch VAGMD system with flat plate collectors (w/o TES).
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Spain9. The 14-effect LT-MED system powered by a 50 MWe PT-CSP system, produces water at 42,927 m3/day. 
The MED model was integrated with the hourly simulations from SAM to describe the dynamic performance 
of an electricity and water cogeneration desalination plant. In this system, the thermal storage supplies the 
required thermal power for power generation and cogeneration during night time. The turbine exhaust steam 
temperature is not provided by SAM; thus, it is calculated as the sum of the dry bulb temperature and the initial 
temperature difference between steam and ambient temperature. The calculated turbine exhaust steam temper-
ature becomes an input to the steam temperature at the inlet of the tube bundle of the MED plant’s first effect.

Simulations of an autonomous PT-CSP power generation and a 12-effect LT-MED desalination system oper-
ating in Almeria, Spain with a feedwater salinity of 60 g/L, show that during most of the winter, the steam 
temperature was too low to drive the MED system. On the other hand, in summer, when the temperature of 
the waste steam reaches 74 °C, the MED system operates at full capacity and the excess heat is curtailed. In such 
cases, sedat suggests the option of adding thermal storage. Figure 11 shows a 5-day performance profile for the 
CSP/LT-MED plant in March and August, without and with thermal storage.

The average DNI is similar in these two periods (~800 W/m2/day), yet a higher temperature in August ena-
bles a significant increase in water production. It is also shown by the wider water production daily peaks that 
a thermal energy storage (TES) system can extend the operation of the MED system by 2 to 3 hours a day in the 
summer.

Fig. 6  Example parametric analysis result on the size of TES for flat plate collectors with a batch VAGMD plant 
in sedat.

https://doi.org/10.1038/s41597-022-01331-4
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Integration with thermal storage system (TES) is also effective in reducing the energy curtailment. In this 
case, the curtailment is 21.1% in the stand-alone system while only 1.1% waste energy is curtailed after involving 
the TES.

Discussion
The software allows the user to interact between the model inputs and simulation results as shown by the 
bi-directional arrows between the sedat block and the outputs cluster in Fig. 2. In this section we discuss a sam-
ple of interactions available to the user.

Fig. 7  Example time-series of outputs for flat plate collectors with a batch VAGMD plant (with a 12-hr TES) 
visualized in sedat.
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Consider a 2.5 MWe Linear Fresnel Direct Steam Concentrated Solar Power (LFDS-CSP) plant coupled with 
a 1000 m3/day MD-batch desalination plant at Tucson, AZ. The simulation of this system showed that 57% of 
the LF-DSG plant output was unutilized (curtailed), indicating that the plant was oversized. Sedat incorporates 
performance-based guidance and it issues a warning in the Results Report section when more than 20% energy 
is unutilized.

In this example, sedat suggested two options (shown in Fig. 12). The first was to reduce the size of the CSP 
plant, and the second was to store the excess energy and use it during the night.

By reducing the CSP plant capacity to 1 MWe, the curtailment dropped to 13.8% but the LCOW reduction 
was small ($5.15/m3 from $5.32/m3). However, by adding a 12-hr thermal storage system to the plant, the energy 
curtailment was reduced to 10.1% while the LCOW was reduced to $4.51 /m3. As shown in Table 2, a combi-
nation of the two actions produced even more benefit; with a 1-MWe solar field and 12-hr storage system, the 
curtailment was reduced to 2.3% and the LCOW was reduced further to $4.14/m3.

In addition to the Results Report previously shown in Fig. 8, the time-series charts of energy and water 
production (see Fig. 9) offer data and guidance for further improving the desalination plant performance and 
LCOW. For example, a user may observe that there is little water production during winter as low ambient 
temperatures result in condenser waste heat with temperature lower than the required minimum input to ther-
mal desalination technologies. To improve this situation, sedat offers two options (as shown in Fig. 10): The 
first option is to increase the waste heat temperature by increasing the Initial Temperature Difference (ITD). 
However, this option leads to a decrease of electricity generation. A second option is to add external thermal 
sources to compensate for low solar energy hours. As shown in Table 3, a combination of the two options gives 
the greater LCOW reduction.

Methods
This section presents the details of the following four steps in developing sedat.

	 1.	 Compilation of geospatial resource databases and displaying them on map layers.
	 2.	 Development of software modules based on open-source libraries to assemble, extract, transform and pass 

the geospatial data to techno-economic solar generation and desalination components.
	 3.	 Development of Graphical User Interface (GUI) components for selecting techno-economic solar and 

desalination models and required model inputs for analysis. The user interface shows reasonable default 
values for model parameters. It also provides the ability to substitute local data sources in place of the 
default data sources.

Fig. 8  Schematic of the solar filed composed of flat plate collectors and LT-MED plant at PSA.

Fig. 9  MED unit integrated into a Linear Fresnel Direct Steam CSP plant.
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Fig. 10  Modeled water production in Abu Dhabi during January 24–28 (two images on the left), and during 
May 21–25 (right images) with different sizes of LF-DSG solar fields; (a) 2.5 MWe LF-DSG with 2000 m3/day 
LT-MED; (b) 1.8 MWe LF-DSG with 2000 m3/day LT-MED.

Fig. 11  Water production during March 22–26 (left), and during August 5–9 (right) in Almeria, Spain from a 
2.5MWe PT-CSP plant coupled with a 2000 m3/day MED plant. (a) Without thermal energy storage (TES); (b) 
with the addition of a 4-hr TES.
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	 4.	 Development of software modules to display desalination model outputs and locations where the estimated 
cost of water from desalination is lower than that of local municipal and industrial water tariffs. Data can be 
exported in tables (comma-separated values (CSV) format that can be opened in Excel, R, and other packages).

Geospatial database compilation and display.  Spatial data are inherently important to select an appro-
priate site for development. This section gives an overview of data collected and the intended use of each one in 
the project.

Solar resource data.  Solar input data and weather information are necessary for generating the energy inputs 
into a solar desalination facility. Models for energy production from solar resources require hourly data on 
solar irradiation and other meteorological conditions. We integrated data of Direct Normal Irradiance (DNI) 
and Global Horizontal Irradiance (GHI) for visualization and query in the site selection stage and Typical 
Meteorological Year (TMY) weather files in the simulations stage. Sedat embeds 1,397 TMY weather files from 
locations around the world. The US data (1,016 locations) were directly extracted from the NSRDB (National 
Solar Radiation Database)10. The TMY files for the locations outside the US were derived from PV-GIS11 dataset 
using PV-GIS API (Application Programming Interface) and were modified applying the NSRDB TMY format. 
Furthermore, since the PVGIS dataset uses UTC (Coordinated Universal Time) for all locations, the time series 
for each location were adjusted to the local time according to its time zone.

Water resource data.  Most of the current US desalination infrastructure utilizes brackish water although sea-
water desalination is more common world-wide12. The prime data source for brackish groundwater is a USGS 
National Brackish Groundwater Assessment which provides data on occurrence and characterization of brack-
ish groundwater resources13. The USGS comprises two datasets: “Dissolved Solids” and “Major Ions”. As part of 
the aggregation process, parametric statistics (minimum, mean, maximum, variance, standard deviation) were 
calculated for the total dissolved solids, and depth attributes, water temperatures and well yields (Fig. 13). The 
data from the brackish water wells were aggregated to county boundaries using the ArcGIS spatial join function. 

Fig. 12  Example of the interactions between model inputs and outputs; suggested options when the model 
generates high thermal energy curtailment or low water production.

Scenario
Desalination 
capacity (m3/day)

Solar field size 
(MW-electricity)

Thermal storage 
system (hours)

Thermal energy 
curtailment (%)

LCOW 
($/m3)

Base scenario 1000 2.5 0 57.3 5.32

Reduce solar field size 1000 1 0 13.8 5.15

Add thermal storage 1000 2.5 12 10.1 4.51

Thermal storage + reduced solar size 1000 2 12 2.3 4.14

Table 2.  Example of sedat options for reducing energy curtailment and LCOW.

Scenario ITD temperature (°C)
Power cycle 
efficiency

External heat resources 
(@ $0.04 /kWhth)

Annual thermal energy 
generation (GWh)

LCOW* 
($/m3)

Base scenario 40 0.37 No 9.85 4.14

Increased ITD 60 0.30 No 14.77 4.07

Increased ITD + external heat 60 0.30 Yes 14.77 3.52

Table 3.  Thermal energy generation and LCOW of options available when solar thermal resource is lacking. 
*An LCOE of 0.05 $/kWhe was assumed in the estimation of LCOW.
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Also, all available data on water temperature were mapped. The aggregation to county level was found useful for 
statewide visualization of the brackish water characteristics.

In addition to brackish water, we mapped the availability of other alternative water sources, such as agricul-
tural drainage water, and produced water from oil and gas (O&G) which is more prevalent in Texas; a detail of 
such O&G produced water resources14 is shown in Fig. 14. These alternative water resources are also represented 
by location and salinity. The feedwater salinity level, as well as the allowed brine concentration determine the 
appropriate desalination technology and how it impacts the cost of operating these plants15. Input water temper-
ature impacts the energy requirements of the system and thus the cost of producing fresh water.

Also, we included the geospatial distribution of U.S. desalination plants as of 2016, courtesy of the Global 
Water Intelligence (GWI)16,17 and tabulated the brine management options available to them. The Texas plants 
included in sedat are shown in Fig. 15.

Power plant data.  We added the latest US database of power plant locations and capacities available from the 
Energy Information Agency (EIA) so that the user can examine the possibility of co-locating a desalination plant 
with a power plant, thereby sharing real estate and grid connectivity. There is also potential for solar thermal 
desalination to use waste heat from power plants to compliment solar resources. Gingerich and Mauter18 esti-
mated that the US generated 14.6 billion GJ of electricity and 26.4 billion GJ of waste heat via coal, nuclear, and 
natural gas power plants. Of this waste heat, 99% is condenser heat discharged to the environment at or below 
41.5 °C which under most conditions is too low to be practically recoverable. The remaining 1% of waste heat is 
discharged in exhaust streams at temperatures between 91 and 543 °C which if recovered could be used in ther-
mal desalination plants that are near the power plants. Sedat guides the user by showing straight-line distances 
between a selected site and near-by power plants.

Water transfer and distribution infrastructure.  Existing conveyance water networks can serve the delivery of 
desalinated water from the plant to customers; thus, the distance of the selected site to the nearest network is 
an important consideration given the cost of building a new water delivery system. Existing water networks 
are represented in sedat by two data sources: existing canals and aqueducts19 and a proxy for local municipal 
water systems based on road locations20. Canals and aqueducts are represented visually in the system, and the 
straight-line distance from a selected site is calculated and shown on the map when a user selects a location. 
The water network proxy locations are stored, but not displayed in the system. The basemap in the application 
includes a road overlay that is separate from the water network. The road network has been subset to include 

Fig. 13  Brackish water resources; (a) TDS levels; (b) well depth levels; (c) water temperatures at well depths; (d) 
mean well yields (data source USGS).
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types that are more likely to be residential; interstates and other road types that are mostly rural have been 
excluded. The network along a generalized road network are presumed to likely have water transportation net-
works. The distance to the nearest point is calculated based on the road network proxy.

Energy and water markets.  Electricity rates and fuel prices from the OpenEI Application Programming 
Interface (API) are being used for cost comparisons with solar-powered desalination. A script was developed 

Fig. 14  Produced water database extract for Texas (includes offshore wells). (Data source: USGS Produced 
Waters13).

Fig. 15  Desalination Plants per desalination technology and plant capacity (GWI 2016 data17).
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to construct a link to the web site; it references the latest available data on the web site, which is updated 
regularly.

Water price data were downloaded from the free, open-access IBNET water tariff database21, a joint prod-
uct of the Global Water Intelligence (GWI) and the International Benchmarking Network of the World Bank 
(IBNET). It includes data on water utilities for 151 national jurisdictions, for a range of recent years up to 2017 
(year range varies greatly by country and utility) on service and utility parameters (Benchmark Database), and 
water tariffs for 211 jurisdictions (Tariffs database). Information includes cost recovery, population served, 
financial performance, non-revenue water, residential and total supply, and total production. Data can be called 
up by utility, by group of utilities, and by comparison between utilities, enabling both country and global level 
comparison for individual utilities.

The data are multi-faceted with multiple price entries associated with fixed and consumption charges for 
various scales of consumption. To reduce complexity and maintain the user-friendly format of sedat, only the 
consumption charges and the corresponding consumption levels are shown. In addition, links to local utility 
web-sites were added on the maps, where the user can see the pricing detail and get price updates in the future.

Regulatory data.  A preliminary permitting requirement database was compiled with examples of regulatory 
and permitting requirements from Texas22, Arizona23, Nevada24, Florida25, California26 and Colorado27. The 
development of this database followed the following steps: a) Searching the websites of state and/or county 
water management and environmental quality agencies, b) researching, collating and studying project devel-
opment reports for existing desalination plants with a specific focus on permitting experience and challenges. 
Information on the permitting requirements applicable to existing desalination plants was compiled, and the 
associated state and county permitting requirements where synthesized into tabular forms that are shown to 
the user of sedat, together with links to associated agencies and permitting forms per state and county as avail-
able and applicable. Where available, the costs of the permitting process were included. The data we were able 
to gather do not present a complete regulatory picture, but they are intended to show elements of the types of 
permits required and associated agencies, setting a foundation for further examination.

Population growth data.  Population growth estimates for U.S. counties consistent with the Shared 
Socioeconomic Pathways (SSP)28,29 are integrated in the application to show areas of projected population 
growth or decline under each pathway scenarios. In the GUI, the layer is available and rendered based on growth 
or decline; when a user selects a county, the population growth curves are shown for all five SSP scenarios along 
with the mean growth curve for all of the scenarios. In this way, users can see if a proposed site is within or near 
a county that is expected to have a growing demand for water.

Software modules for data selection, mapping and integration with the techno-economic 
models.  Software modules using open-source libraries have been prototyped to select the appropriate data 
based on the user’s selected site.

Spatial queries (nearest features, distances, overlapping features) are implemented in Python with the use of 
OSGeo and other open libraries, including Fiona, Shapely, Xarray, and SciPy.spatial. As shown in Fig. 3, once 
a user selects a location on the map, details of the location chosen are shown or made available via hyperlinks, 
including the DNI and GHI values, utility prices (fuel and electricity), and regulatory information at the state 
and local levels. Distances and details on the closest desalination facility, water network proxy, canal or aque-
duct, and power plants are assessed and lines to each of these closest locations are drawn on the map.

Adequate performance of the site selection portion of the GUI (site selection query completing in less than a 
minute) required several strategies. Fiona, Shapely and SciPy.spatial were used to pre-process the GIS data and 
implement a rapid lookup of the nearest feature to a user-selected site through the creation of spatial indexes, 
thus KDTrees for Points and RTrees for Polygons. Note that line features were converted to points (one per 
vertex in the linear feature) and queried based on the KDTree of the points to find the nearest feature. The line 
features were also generalized using a tolerance of 15 m, significantly reducing the level of detail in the data while 
not impacting the location precision significantly.

The points and polygons are queried in a two-step process: the index for each polygon spatial layer is que-
ried to quickly identify candidates for a match; if only one candidate is found it is read directly from the GIS 
layer, greatly reducing the memory footprint required to read in the data. The indexes (bounding boxes) for 
polygons can overlap; if multiple candidates are found, the candidates are read into memory (again, a much 
smaller footprint than the entire dataset) and the user-selected point is compared to each candidate using the 
“contains” operation to find the matching polygon. For point locations, the KDTree is queried to find the closest 
point, which is read into memory from the selected dataset. For large point layers (e.g., canals and aqueducts, 
and water proxy locations) a two-stage query is employed. The state and county that a user-selected point falls 
within is first determined by querying as described above for all polygons. The state and county code are used 
to identify the index file for each road and canal location and these are stored separately to reduce memory size. 
The road network (water proxy) includes 81,185,710 point locations within the United States and, if read in at 
run-time for location lookup, it results in poor performance. Our initial approach divided the water network 
proxy by State, but this was still slow (more than 60 seconds for a road query in a large state such as California). 
We further subdivided the water network proxy into county-level files, which improved performance by a factor 
of two in large States. In addition to speed of access, the large data volume is also an issue. If uncompressed, the 
shapefiles (and associated KDTree index files) require 46.1 GB on disk; the compressed shapefiles and associated 
KDTRee index files only require 4.6 GB on disk. Testing of the opening speed for compressed shapefiles using 
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the Python library, Fiona, versus uncompressed shapefiles resulted in a response time difference of approxi-
mately 0.04 seconds for the largest zip archive (14.7 MB).

Wrapper modules for the techno-economic models in Python have been developed. These modules have the 
input parameters required for the models, and will be called by the code supporting the user interface (passing 
the input parameters collected from the GIS data and user). This is the integration point between the GUI and 
the modeling components of the software application.

GUI model development and integration.  Solar energy generation models from SAM.  Concentrated 
solar power (CSP) and photovoltaics (PV) models, including the associated financial models, from NREL’s System 
Advisor Model (SAM) were tested for integration into sedat. SAM provides annual-hourly simulation for different 
plant parameters depending on hourly weather conditions. However, since these models were designed for electric-
ity rather than heat production, the source code was modified to obtain variables needed for integration with solar 
thermal desalination models (e.g., condenser temperature and exhaust steam mass flow rate in the power block). 
The SAM models were integrated into sedat using Python wrappers. However, in order to develop a graphical user 
interface (GUI) for sedat, the wrappers created from SAM for CSP modules and financial modules needed substan-
tial modifications and restructuring. The Python wrappers for these models contain more than 300 input variables 
for each module which were being initialized in the wrapper, and “methods” were created in each wrapper corre-
sponding to sub-sections on the SAM user interface; “methods” are a type of function in Python classes. However, 
the presence of more than 300 variables for each SAM model made this approach tedious. Further, programmati-
cally calling multiple methods for each model’s element was not the most efficient way of integration. Subsequently, 
an interface was developed using the DataTable function in DashPlotly to construct the frame of input variables 
and JavaScript Object Notation (JSON) to structure all the variables of each model and adapt it to our GUI.

JSON captures the structure of the input fields on the user interface along with assigning values and reading 
properties for each variable. JSON objects can transmit attribute-value pairs, arrays and any other serializable 
data objects; these were used to store and communicate data used in modeling solar and desalination plants of 
any type. This approach consisted of creating Python wrappers for each model from the user interface of SAM. 
Each variable value from the wrapper was matched with its defaulted value from SAM and added to a JSON file.

The functionality and simulations run by SAM are imported into the software by using the Python scripts 
generated by creating a SAM wrapper. The wrapper initializes all the variables used for a model within SAM, 
compiles the source code of SAM and executes the models.

The new wrappers were further modified to reflect software engineering best practices. Unit tests were added 
to each wrapper and a logger was set up for each application which can be accessed from any module in the code. 
These functionalities allow the programmers working on the development to debug the code and improve the 
efficiency of integrating different modules. Logic checks were added to handle rules governing input parame-
ters, such as when the change of an option on one tab can impact the default values on a different tab. This logic 
was also added to the callback functions. Also, to guide the validity of user input choices, “Constraints”, and 
“Connections” were implemented. The “Constraints” attribute establishes the range of valid inputs in each techni-
cal solar and desalination model parameter. “Connections” describe relationships between certain pairs of inputs.

The JSON file is used to build the GUI interface by iterating through each tab, section, and subsection in the 
SAM user interface and creating the corresponding menu elements in the Dash framework. This code can be 
reused to create menu structures that represent each of the SAM models without having to manually program 
the menu elements; each model can have a menu system automatically generated from the JSON file. Logic for 
loading the various models was created in the Python code so that the appropriate menu system is loaded based 
on the user-selected model.

Our approach involved capturing the structure of the variables on the GUI inside the JSON in a non-repetitive 
manner along with matching default values of all the SAM variables from a sub-branch of the SAM GitHub 
repository30 that includes JSON files with all of the model variables and default values. The default values of 
different model variables in SAM are populated in from these files. We identified these files in SAM GitHub and 
used them in the development process for our software, saving time and effort over the manual process we had 
previously used. The JSON file created for input variables captures the structure of the GUI by adding variables as 
list elements inside dictionaries. The dictionaries contain the name of the tab, section or sub-section on the GUI 
as a dictionary key and have the variables, sub-section or section elements as dictionary values. In this manner, it 
is easier to collect different variables belonging to each GUI section while generating the GUI programmatically.

The different files associated in this integration are structured in folders as shown in Fig. 16. SamBaseClass.
py is the Python file that integrates and uses these files. The files generated from the wrapper (PySSC.py, ssca-
pi.h, ssc.dll for Windows, and ssc.dylib for MacOS) are also placed inside the same folder. The compilation is a 
one-time process; once created, the files are included in sedat and used for all desalination models that require 
solar energy inputs. New versions of SAM, along with new desalination or solar thermal technologies, can be 
incorporated into our software by just modifying the files mentioned earlier.

Each CSP or PV model can be used as a stand-alone model, or combined with one of the six financial models. 
All these models are integrated in a JSON structure and tested to ensure that nothing was missed in the trans-
lation. For verifying the implementation of the SAM models in our software, a number of inputs were varied to 
compare the outputs of the model at its source with the JSON platform.

However, some parameter dependencies were described in the SAM user interface, rather than in the 
source code and those had to be restructured in the sedat GUI. To implement such dependencies, we identified 
the equations embedded in the SAM interface from the SAM installation folder. Then we isolated the ones 
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that calculate input variables. For example, in SAM’s Molten Salt Power Tower model, the number of loops is  
calculated by:

nLoops
specified solar multiple sm aperture

loop aperture
_ _ 1_

_
=

×

nLoops: Actual number of loops
specified_solar_multiple: User defined solar multiple (SM)
sm1_aperture: Total required aperture, SM = 1 (m2)
loop_aperture: Single loop aperture (m2)

On the right-hand side of the equation, “specified_solar_multiple” is one of the model input variables, and 
the other two are intermediate variables that are calculated in the GUI but not used in model simulation. The 
total required aperture “sm1_aperture” is a function of design capacity, design point DNI and optical parame-
ters. The single loop aperture “loop_aperture” is a function of collector area and number of modules.

Thus, the number of loops is dependent on multiple other input variables and it is necessary to implement such 
relationships to fit the cases. The implementation work flow mainly includes building the structure (e.g., callback 
functions) to dynamically link those dependent variables, updating the target variable in the GUI in real time and vis-
ualizing them. In summary, the procedure of implementing the SAM models into sedat includes the following steps:

1. �Identify the valid input/output variables of a SAM model and organize them into a JSON file, which can be 
used for a Dash data table in the GUI.

2. Create a JSON file containing the default values for the input variables.
3. Identify all the parameter dependencies from SAM GUI and create callback functions accordingly.
4. Connect the location of the weather file to the map selection information.
5. Connect the SAM model results to the desalination and cost model.
6. Create warnings or suggestions to users when certain options are chosen.

Desalination models.  Sedat incorporates several well-tested desalination models; a list is shown in Table 4.
The inputs and outputs for desalination models were constructed in the same format as SAM variables, in 

order to be integrated into the same GUI frame. However, unlike SAM models which are based on C++ source 
code and require the connection between the inputs and models to be built, desalination models are constructed 
in a way that can directly import the inputs from the GUI and execute.

The modular architecture of sedat allows the addition of new solar and desalination models, in the six steps 
shown in Fig. 17 and summarized below:

	 1.	 Develop Python scripts for the models. For solar models, the output should include the hourly energy 
generation, LCOH and LCOE. For desalination, design, simulation and cost models should be developed

	 2.	 Create the JSON files that describe the input variables and their default values
	 3.	 Configure the possible combinations of the new models so that it can be selected from the menu
	 4.	 Connect the input variables from the map to the models (e.g., the weather file of a selected location and the 

feedwater salinity)
	 5.	 Connect the input and output of the design, simulation and financial models
	 6.	 Configure the output variables for the result chart and report

Fig. 16  Schematic of the elements and files used in the solar and desalination model integration.
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Graphical user interface (gui) structure.  The data flow diagram shown in Fig. 18 walks through 
a high-level workflow for site and model selection using the desktop application for a site-selection driven 
workflow.

In a typical workflow, an user would work through the steps shown in the data workflow diagram to com-
plete an analysis: site selection, model selection, review of input parameters, model run, review results. The site 
selection stage can be skipped, in which case the model software will use the last site selected by the user for the 
model run. In model selection, the user selects a supported combination of solar thermal model, desalination 
model, and financial model. The site selection and parameter review workflows can be iterative: in site selection, 
multiple sites can be reviewed before proceeding to model selection; in parameter review multiple parameters 
can be edited before running the models. During the parameter review, a user can replace the default input 
parameters, generally through direct editing in the GUI. If the user has a custom weather file in the documented 
TMY format, it can be used as a model input by entering the full path to the file. Additionally, parameters gen-
erated from SAM software can be used as an input by uploading a SAM generated JSON file. Once the models 
are executed, the results are presented to the user with hourly, daily and weekly time-series solar generation 
and desalination plant performance (e.g., condenser steam temperature, steam flow rate, waste heat generation, 
water production, fossil fuel use, and storage status). A link to the report page will load a summary of input 
model parameters and outputs to be displayed, along with links to download the model outputs. An additional 
link for the results map will display locations where water prices from utilities are equal to or greater than the 
LCOW calculated by the model. The results can be refined by adjusting the factor for filtering; i.e., the water 
parity can be dynamically adjusted to show utilities that are less or more expensive than the calculated LCOW. 
At this point the workflow ends. The process could be started again, or the application closed.

Existing sources can be replaced with more recent versions for spatial query and new data can be added by 
adding layers in the map file. The software can be expanded to include synergistic renewable energy sources that 
could be used to meet the energy demand for any proposed water treatment infrastructure. One example is con-
sidering solar thermal, geothermal, and waste heat resources to collectively drive thermal desalination plants. 
Another example is to assess the solar and wind complementarity at high temporal resolution to examine the 
extent that VRE alone can power desalination plants.

Desalination technologies Model development

MED and MD

These models were developed and validated at pilot-scale at PSA5–9. Some 
models were written in MATLAB and other were based on Engineering 
Equations Solver (EES). The EES-based models were approximated with 
empirical equations coded in Python and the MATLAB-based MED design 
models were converted to simulation ones also in Python.

Forward Osmosis (FO) The FO model was developed and validated by Trevi Co.45; it was translated 
into Python and generalized for wide input ranges at Columbia University.

Multi-pass Reverse Osmosis (RO), and 
Osmotically Assisted Reverse Osmosis (OARO)

Developed in Matlab and Python at Columbia University15,46–48. The 
multi-pass RO model was designed for high purity permeate production for 
electrolyzer and other industrial applications, whereas the OARO model is 
used in minimal and zero-liquid-discharge pathways, for comparison with 
thermal desalination technologies.

Hybrids (RO-FO and RO-batch-VAGMD) Developed at Columbia University. Designed for low cost and/or minimum 
liquid discharge applications.

Table 4.  Summary description of desalination models included in sedat.

Fig. 17  Outline of the sedat modular architecture.
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Data availability
All the open-source data inputs of sedat are accessible through figshare31 (https://doi.org/10.6084/
m9.figshare.c.5874125.v5). Viewing or using these data requires GIS software, such as Esri ArcGIS or the open 
source QGIS application.

Code availability
All source code for sedat is made available through github under the academic free license, at the time of writing. 
The code is hosted at https://github.com/gyetman/DOE_CSP_PROJECT.
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